Computing the inverse Laplace transform for rational functions vanishing at infinity
نویسندگان
چکیده
منابع مشابه
INCLUSION RELATIONS CONCERNING WEAKLY ALMOST PERIODIC FUNCTIONS AND FUNCTIONS VANISHING AT INFINITY
We consider the space of weakly almost periodic functions on a transformation semigroup (S, X , ?) and show that if X is a locally compact noncompact uniform space, and ? is a separately continuous, separately proper, and equicontinuous action of S on X, then every continuous function on X, vanishing at infinity is weakly almost periodic. We also use a number of diverse examples to show ...
متن کاملOn the Inverse Laplace-stieltjes Transform of A-stable Rational Functions
Let r be an A-stable rational approximation of the exponential function of order q ≥ 1 and let t > 0. It is shown that the inverse LaplaceStieltjes transforms αn : s→ αn∗(ns t ) of rn(z) := r n( tz n ) converge in Lp(R+) to the Heaviside function Ht with a rate of t1/pn−1/2p(ln(n+1))1−1/p. Moreover, for 0 ≤ k ≤ q, the k-th antiderivatives of αn converge in Lp(R+) to the k-th antiderivative of t...
متن کاملInverse Laplace transform method for multiple solutions of the fractional Sturm-Liouville problems
In this paper, inverse Laplace transform method is applied to analytical solution of the fractional Sturm-Liouville problems. The method introduces a powerful tool for solving the eigenvalues of the fractional Sturm-Liouville problems. The results how that the simplicity and efficiency of this method.
متن کاملinclusion relations concerning weakly almost periodic functions and functions vanishing at infinity
we consider the space of weakly almost periodic functions on a transformation semigroup (s, x , ?) and show that if x is a locally compact noncompact uniform space, and ? is a separately continuous, separately proper, and equicontinuous action of s on x, then every continuous function on x, vanishing at infinity is weakly almost periodic. we also use a number of diverse examples to show that th...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cubo (Temuco)
سال: 2014
ISSN: 0719-0646
DOI: 10.4067/s0719-06462014000300008